Cálculo del inventario de un ítem con demanda normal y tiempo de entrega exponencial

Autores/as

DOI:

https://doi.org/10.19136/hitos.a31n90.6382

Palabras clave:

cantidad de pedido, punto de reorden, costo del inventario, demanda, tiempo de entrega.

Resumen

OBJETIVO: Estudiar el caso del cálculo del inventario de un artículo con demanda normal y tiempo de entrega del proveedor exponencial.

MATERIAL Y MÉTODO: Se aplican los modelos tradicionales de cantidad de pedido y punto de reorden mediante simulación, incluyendo los ahorros por comprar mayores volúmenes.

RESULTADOS: Se obtuvo la cantidad de pedido y el punto de reorden para el caso ilustrativo y luego se variaron el efecto boca a boca y la desviación estándar de la demanda. Si estos dos parámetros aumentan, el costo del inventario también lo hace, siendo la variación del costo prácticamente lineal con la desviación estándar.

CONCLUSIONES: La cantidad de pedido se ubicó en los límites inferiores de máximo volumen, 5001 y 10001 artículos. Al incrementarse el efecto boca a boca, se incrementa el costo de faltantes y del inventario, así como la cantidad de pedido y con mayor desviación estándar, el costo del inventario se incrementa de manera lineal, incluso el punto de reorden también aumenta.

Entre las limitantes del estudio está que se ha manejado una distribución de probabilidad para la demanda y el tiempo de entrega del proveedor, lo que da pie en futuros casos de manejar otras distribuciones de probabilidad.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Juan Manuel Izar Landeta, Instituto Tecnológico Superior de Rioverde

    Doctor en Administración. 

  • José Adrián Nájera Saldaña, Instituto Tecnológico Superior de Rioverde

    Doctor en Administración. 

  • Lizbeth Angélica Zárate Camacho, Instituto Tecnológico Superior de Rioverde

    Maestra en Educación Basada en Competencias. 

Referencias

Arani, M., Abdolmaleki, S., Maleki, M., Momenitabar, M. y Liu, X. (2021). A simulation-optimization technique for service level analysis in conjunction with reorder point estimation and lead-time consideration: a case study in sea port. Advances in Parallel & Distributed Processing, and Applications: Proceedings from PDPTA'20, CSC'20, MSV'20, and GCC'20. Springer International Publishing, 839-858. doi: 10.1007/978-3-030-69984-0_61.

Barron, Y. y Baron, O. (2020). The residual time approach for (Q, r) model under perishability, general lead times, and lost sales. Mathematical Methods of Operations Research, 92(3), 601-648. doi: 10.1007/s00186-020-00717-7.

Bhavsar, V. R. y Sinha, B. (2019). Selection of reorder point when demand is variable and also lead time is variable with different significance level to demand deviation & lead deviation. International Journal of Management (IJM), 10(6), 235-238.

Braglia, M., Castellano, D., Marrazzini, L. y Song, D. (2019). A continuous review, (Q, r) inventory model for a deteriorating item with random demand and positive lead time. Computers & Operations Research, 109, 102-121. doi: 10.1016/J.COR.2019.04.019.

Chakraborty, D. y Bhattacharje, D., (2019). Effect of fraction of demand backordered in inventory management while obtaining optimum order quantity and reorder point. Songklanakarin Journal of Science and Technology. 41(6), 1376-1380. doi: 10.14456/sjst-psu.2019.174.

Dey, B. K., Bhuniya, S. y Sarkar, B. (2021). Involvement of controllable lead time and variable demand for a smart manufacturing system under a supply chain management. Expert Systems with Applications, 184(C), 115464. doi: 10.1016/j.eswa.2021.115464.

Di Nardo, M., Clericuzio, M., Murino, T. y Sepe, C. (2020). An economic order quantity stochastic dynamic optimization model in a logistic 4.0 environment. Sustainability, 12(10), 1-25. https://doi.org/10.3390/su12104075.

Dullaert, W. y Zamparini, L., (2013). The impact of leadtime reliability in freight transport: A logistics assessment of transport economics findings. Transportation Research Part E, 49(1), 190-200. doi: 10.1016/j.tre.2012.08.005.

Efrilianda, D. A., Mustafid, y Isnanto, R. (2018). Inventory control systems with safety stock and reorder point approach. 2018 International Conference on Information and Communications Technology (ICOIACT). IEEE, 844-847. doi: 10.1109/ICOIACT.2018.8350766.

Ghafour, K. M. (2018). Optimising safety stocks and reorder points when the demand and the lead-time are probabilistic in cement manufacturing. International Journal of Procurement Management, 11(3), 387-398.

Glock, C. H. y Ries, J. M. (2013). Reducing lead time risk through multiple sourcing: the case of stochastic demand and variable lead time. International Journal of Production Research, 51(1), 43-56. https://doi.org/10.1080/00207543.2011.644817.

He, X. J., Xu, X. y Hayya, J. C. (2011). The effect of lead-time on the supply chain: The mean versus the variance. International Journal of Information Technology & Decision Making, 10(01), 175-185. https://doi.org/10.1142/S0219622011004270.

Heaviside, M., Mulyawan, B. y Sutrisno, T. (2020). Determination of minimum stock on system retail using forecast, economic order quantity and reorder point methods. IOP Conference Series: Materials Science and Engineering. 1007(1), 012180. doi: 10.1088/1757-899X/1007/1/012180.

Inprasit, T. y Tanachutiwat, S. (2018). Reordering point determination using machine learning technique for inventory management. 2018 International Conference on Engineering, Applied Sciences, and Technology (ICEAST). IEEE, 1-4. doi: 10.1109/ICEAST.2018.8434473.

Izar-Landeta, J. M., Ynzunza-Cortés, C. B., Castillo-Ramírez, A. y Hernández-Molinar, R. (2016). Estudio comparativo del impacto de la media y varianza del tiempo de entrega y de la demanda en el costo del inventario. Ingeniería, Investigación y Tecnología, XVII(3), 371-381. https://doi.org/10.1016/j.riit.2016.07.007.

Izar-Landeta, J. M., Izar-Tenorio, J. y Hernández-Molinar, R. (2018). Calculation of the reorder point for items with exponential and Poisson distribution of leadtime demand. International Journal of Engineering Research and Development, 14(1), 12-21. https://www.ijerd.com/paper/vol14-issue1/Version-2/C140121221.pdf

Johansen, S. G. (2019). Emergency orders in the periodic-review inventory system with fixed ordering costs and stochastic lead times for normal orders. International Journal of Production Economics, 209, 205-214. https://doi.org/10.1016/j.ijpe.2018.01.017.

Kanet J. J., Gorman M. F. y Stoblëin M. (2010). Dynamic planned safety stocks in supply networks. International Journal of Production Research, 48(22), 6859-6880.

King P. L. (2011). Crack the code. Understanding safety stock and mastering its equations. APICS Magazine, 21(4), 33-36. https://web.mit.edu/2.810/www/files/readings/King_SafetyStock.pdf

Lukiman, A. D. y Richard, R. (2020). Analytical Hierarchy Process (AHP), Economic Order Quantity (EOQ), and Reorder Point (ROP) in Inventory Management System. ComTech: Computer, Mathematics and Engineering Applications, 11(1), 29-34, https://doi.org/10.21512/comtech.v11i1.5746.

Malik, A. I. y Sarkar, B. (2018). A distribution-free model with variable setup cost, backorder price discount and controllable lead time. DJ Journal of Engineering and Applied Mathematics, 4(2), 58-69. doi: 10.18831/djmaths.org/2018021006.

Nobil, A. H., Sedigh, A. H. A. y Cárdenas-Barrón, L. E. (2020). Reorder point for the EOQ inventory model with imperfect quality items. Ain Shams Engineering Journal, 11(4), 1339-1343. https://doi.org/10.1016/j.asej.2020.03.004.

Saini, K. (2021). Reorder Point Intervention (ROP) for fast moving drugs at a local pharmacy. World Journal of Pharmaceutical Research, 10(11), 1391-1396, doi: 10.20959/wjpr202111-21326.

Sana, S. S., & Goyal, S. K., (2015). (Q,r,L) model for stochastic demand with lead-time dependent partial backlogging. Annals of Operations Research, 233(1), 401-410. doi: 10.1007/s10479-014-1731-2.

Sevgen, A. y Sargut, F. Z. (2019). May reorder point help under disruptions? International Journal of Production Economics, 209(C), 61-69. doi: 10.1016/j.ijpe.2018.02.014.

Shaikh, A. A., Khan, A. A., Panda, G. y Konstantaras, I. (2019). Price discount facility in an EOQ model for deteriorating items with stock‐dependent demand and partial backlogging. International Transactions in Operational Research, 26(4), 1365-1395. https://doi.org/10.1111/itor.12632.

Silver E. A. (2008). Inventory management: An overview, Canadian publications, practical applications and suggestions for future research. Information Systems and Operations Research, 46(1), 15-27. doi: 10.3138/infor.46.1.15.

Sorooshian, S. y Jadidi, O., (2021). Supply Reorder Point in Response to Lead-Time Uncertain Demand. Journal of Engineering Science and Technology Review, 14(2), 59-60. doi: 10.25103/jestr.142.08.

Sun, X. y Zhang, R. (2019). The single-manufacturer single-retailer integrated production-delivery lot sizing model with production capacity under stochastic lead time demand. Procedia CIRP, 83, 528-533. https://doi.org/10.1016/j.procir.2019.04.111.

Tahami, H., Mirzazadeh, A. y Gholami-Qadikolaei, A. (2019). Simultaneous control on lead time elements and ordering cost for an inflationary inventory-production model with mixture of normal distributions LTD under finite capacity. RAIRO-Operations Research, 53(4), 1357-1384. https://doi.org/10.1051/ro/2019060.

Van-Kampen T. J., Van-Donk D. P. y Van-Der Z. D. (2010). Safety stock or safety lead time: coping with unreliability in demand and supply. International Journal of Production Research, 48(24), 7463-7481. https://doi.org/10.1080/00207540903348346.

Wanti, L. P., Maharrani, R. H., Prasetya, N. W. A., Tripustikasari, E. y Ikhtiagung, G. N. (2020). Optimation economic order quantity method for a support system reorder point stock. International Journal of Electrical and Computing Engineering, 10(5), 4992-5000. doi: 10.11591/ijece.v10i5.pp4992-5000.

Xiaoming, L. I. (2020). Valuing lead-time and its variance in batch-ordering inventory policies. International Journal of Production Economics, 228(C), [107731]. doi: 10.1016/j.ijpe.2020.107731.

Yassine, N. y El-Rabih, S. (2019). Assembling components with probabilistic lead times. IOP Conference Series: Materials Science and Engineering. IOP Publishing, 521, 012013. doi: 10.1088/1757-899X/521/1/012013.

Descargas

Publicado

2025-08-22

Cómo citar

Izar Landeta, J. M., Nájera Saldaña, J. A., & Zárate Camacho, L. A. . (2025). Cálculo del inventario de un ítem con demanda normal y tiempo de entrega exponencial. Hitos De Ciencias Económico Administrativas, 31(90), 226-244. https://doi.org/10.19136/hitos.a31n90.6382