Calculating the inventory of an item with normal demand and exponential delivery time

Authors

DOI:

https://doi.org/10.19136/hitos.a31n90.6382

Keywords:

order quantity, reorder point, inventory cost, demand, lead time.

Abstract

OBJECTIVE: To study the case of calculating the inventory of an item with normal demand and exponential supplier delivery time.

MATERIAL AND METHOD: Traditional order quantity and reorder point models are applied through simulation, including savings from purchasing larger volumes.

RESULTS: The order quantity and reorder point were obtained for the illustrative case, and then the word-of-mouth effect and standard deviation of demand were varied. As these two parameters increase, so does inventory cost, with the change in cost being practically linear with the standard deviation.

CONCLUSIONS: The order quantity was within the lower limits of maximum volume, 5,001 and 10,001 items. As the word-of-mouth effect increased, the cost of shortages and inventory, as well as the order quantity, increased. With a higher standard deviation, inventory costs increased linearly, even increasing the reorder point.

Among the limitations of the study is that a probability distribution was used for the supplier's demand and delivery time, which allows for the use of other probability distributions in future cases.

Downloads

Download data is not yet available.

Author Biographies

  • Juan Manuel Izar Landeta, Instituto Tecnológico Superior de Rioverde

    Doctor en Administración. 

  • José Adrián Nájera Saldaña, Instituto Tecnológico Superior de Rioverde

    Doctor en Administración. 

  • Lizbeth Angélica Zárate Camacho, Instituto Tecnológico Superior de Rioverde

    Maestra en Educación Basada en Competencias. 

References

Arani, M., Abdolmaleki, S., Maleki, M., Momenitabar, M. y Liu, X. (2021). A simulation-optimization technique for service level analysis in conjunction with reorder point estimation and lead-time consideration: a case study in sea port. Advances in Parallel & Distributed Processing, and Applications: Proceedings from PDPTA'20, CSC'20, MSV'20, and GCC'20. Springer International Publishing, 839-858. doi: 10.1007/978-3-030-69984-0_61.

Barron, Y. y Baron, O. (2020). The residual time approach for (Q, r) model under perishability, general lead times, and lost sales. Mathematical Methods of Operations Research, 92(3), 601-648. doi: 10.1007/s00186-020-00717-7.

Bhavsar, V. R. y Sinha, B. (2019). Selection of reorder point when demand is variable and also lead time is variable with different significance level to demand deviation & lead deviation. International Journal of Management (IJM), 10(6), 235-238.

Braglia, M., Castellano, D., Marrazzini, L. y Song, D. (2019). A continuous review, (Q, r) inventory model for a deteriorating item with random demand and positive lead time. Computers & Operations Research, 109, 102-121. doi: 10.1016/J.COR.2019.04.019.

Chakraborty, D. y Bhattacharje, D., (2019). Effect of fraction of demand backordered in inventory management while obtaining optimum order quantity and reorder point. Songklanakarin Journal of Science and Technology. 41(6), 1376-1380. doi: 10.14456/sjst-psu.2019.174.

Dey, B. K., Bhuniya, S. y Sarkar, B. (2021). Involvement of controllable lead time and variable demand for a smart manufacturing system under a supply chain management. Expert Systems with Applications, 184(C), 115464. doi: 10.1016/j.eswa.2021.115464.

Di Nardo, M., Clericuzio, M., Murino, T. y Sepe, C. (2020). An economic order quantity stochastic dynamic optimization model in a logistic 4.0 environment. Sustainability, 12(10), 1-25. https://doi.org/10.3390/su12104075.

Dullaert, W. y Zamparini, L., (2013). The impact of leadtime reliability in freight transport: A logistics assessment of transport economics findings. Transportation Research Part E, 49(1), 190-200. doi: 10.1016/j.tre.2012.08.005.

Efrilianda, D. A., Mustafid, y Isnanto, R. (2018). Inventory control systems with safety stock and reorder point approach. 2018 International Conference on Information and Communications Technology (ICOIACT). IEEE, 844-847. doi: 10.1109/ICOIACT.2018.8350766.

Ghafour, K. M. (2018). Optimising safety stocks and reorder points when the demand and the lead-time are probabilistic in cement manufacturing. International Journal of Procurement Management, 11(3), 387-398.

Glock, C. H. y Ries, J. M. (2013). Reducing lead time risk through multiple sourcing: the case of stochastic demand and variable lead time. International Journal of Production Research, 51(1), 43-56. https://doi.org/10.1080/00207543.2011.644817.

He, X. J., Xu, X. y Hayya, J. C. (2011). The effect of lead-time on the supply chain: The mean versus the variance. International Journal of Information Technology & Decision Making, 10(01), 175-185. https://doi.org/10.1142/S0219622011004270.

Heaviside, M., Mulyawan, B. y Sutrisno, T. (2020). Determination of minimum stock on system retail using forecast, economic order quantity and reorder point methods. IOP Conference Series: Materials Science and Engineering. 1007(1), 012180. doi: 10.1088/1757-899X/1007/1/012180.

Inprasit, T. y Tanachutiwat, S. (2018). Reordering point determination using machine learning technique for inventory management. 2018 International Conference on Engineering, Applied Sciences, and Technology (ICEAST). IEEE, 1-4. doi: 10.1109/ICEAST.2018.8434473.

Izar-Landeta, J. M., Ynzunza-Cortés, C. B., Castillo-Ramírez, A. y Hernández-Molinar, R. (2016). Estudio comparativo del impacto de la media y varianza del tiempo de entrega y de la demanda en el costo del inventario. Ingeniería, Investigación y Tecnología, XVII(3), 371-381. https://doi.org/10.1016/j.riit.2016.07.007.

Izar-Landeta, J. M., Izar-Tenorio, J. y Hernández-Molinar, R. (2018). Calculation of the reorder point for items with exponential and Poisson distribution of leadtime demand. International Journal of Engineering Research and Development, 14(1), 12-21. https://www.ijerd.com/paper/vol14-issue1/Version-2/C140121221.pdf

Johansen, S. G. (2019). Emergency orders in the periodic-review inventory system with fixed ordering costs and stochastic lead times for normal orders. International Journal of Production Economics, 209, 205-214. https://doi.org/10.1016/j.ijpe.2018.01.017.

Kanet J. J., Gorman M. F. y Stoblëin M. (2010). Dynamic planned safety stocks in supply networks. International Journal of Production Research, 48(22), 6859-6880.

King P. L. (2011). Crack the code. Understanding safety stock and mastering its equations. APICS Magazine, 21(4), 33-36. https://web.mit.edu/2.810/www/files/readings/King_SafetyStock.pdf

Lukiman, A. D. y Richard, R. (2020). Analytical Hierarchy Process (AHP), Economic Order Quantity (EOQ), and Reorder Point (ROP) in Inventory Management System. ComTech: Computer, Mathematics and Engineering Applications, 11(1), 29-34, https://doi.org/10.21512/comtech.v11i1.5746.

Malik, A. I. y Sarkar, B. (2018). A distribution-free model with variable setup cost, backorder price discount and controllable lead time. DJ Journal of Engineering and Applied Mathematics, 4(2), 58-69. doi: 10.18831/djmaths.org/2018021006.

Nobil, A. H., Sedigh, A. H. A. y Cárdenas-Barrón, L. E. (2020). Reorder point for the EOQ inventory model with imperfect quality items. Ain Shams Engineering Journal, 11(4), 1339-1343. https://doi.org/10.1016/j.asej.2020.03.004.

Saini, K. (2021). Reorder Point Intervention (ROP) for fast moving drugs at a local pharmacy. World Journal of Pharmaceutical Research, 10(11), 1391-1396, doi: 10.20959/wjpr202111-21326.

Sana, S. S., & Goyal, S. K., (2015). (Q,r,L) model for stochastic demand with lead-time dependent partial backlogging. Annals of Operations Research, 233(1), 401-410. doi: 10.1007/s10479-014-1731-2.

Sevgen, A. y Sargut, F. Z. (2019). May reorder point help under disruptions? International Journal of Production Economics, 209(C), 61-69. doi: 10.1016/j.ijpe.2018.02.014.

Shaikh, A. A., Khan, A. A., Panda, G. y Konstantaras, I. (2019). Price discount facility in an EOQ model for deteriorating items with stock‐dependent demand and partial backlogging. International Transactions in Operational Research, 26(4), 1365-1395. https://doi.org/10.1111/itor.12632.

Silver E. A. (2008). Inventory management: An overview, Canadian publications, practical applications and suggestions for future research. Information Systems and Operations Research, 46(1), 15-27. doi: 10.3138/infor.46.1.15.

Sorooshian, S. y Jadidi, O., (2021). Supply Reorder Point in Response to Lead-Time Uncertain Demand. Journal of Engineering Science and Technology Review, 14(2), 59-60. doi: 10.25103/jestr.142.08.

Sun, X. y Zhang, R. (2019). The single-manufacturer single-retailer integrated production-delivery lot sizing model with production capacity under stochastic lead time demand. Procedia CIRP, 83, 528-533. https://doi.org/10.1016/j.procir.2019.04.111.

Tahami, H., Mirzazadeh, A. y Gholami-Qadikolaei, A. (2019). Simultaneous control on lead time elements and ordering cost for an inflationary inventory-production model with mixture of normal distributions LTD under finite capacity. RAIRO-Operations Research, 53(4), 1357-1384. https://doi.org/10.1051/ro/2019060.

Van-Kampen T. J., Van-Donk D. P. y Van-Der Z. D. (2010). Safety stock or safety lead time: coping with unreliability in demand and supply. International Journal of Production Research, 48(24), 7463-7481. https://doi.org/10.1080/00207540903348346.

Wanti, L. P., Maharrani, R. H., Prasetya, N. W. A., Tripustikasari, E. y Ikhtiagung, G. N. (2020). Optimation economic order quantity method for a support system reorder point stock. International Journal of Electrical and Computing Engineering, 10(5), 4992-5000. doi: 10.11591/ijece.v10i5.pp4992-5000.

Xiaoming, L. I. (2020). Valuing lead-time and its variance in batch-ordering inventory policies. International Journal of Production Economics, 228(C), [107731]. doi: 10.1016/j.ijpe.2020.107731.

Yassine, N. y El-Rabih, S. (2019). Assembling components with probabilistic lead times. IOP Conference Series: Materials Science and Engineering. IOP Publishing, 521, 012013. doi: 10.1088/1757-899X/521/1/012013.

Downloads

Published

2025-08-22

How to Cite

Izar Landeta, J. M., Nájera Saldaña, J. A., & Zárate Camacho, L. A. . (2025). Calculating the inventory of an item with normal demand and exponential delivery time. HITOS DE CIENCIAS ECONÓMICO ADMINISTRATIVAS, 31(90), 226-244. https://doi.org/10.19136/hitos.a31n90.6382