Estimation of Order Quantity and Reorder Point for an Item with RandomDemand and Delivery Time

Authors

DOI:

https://doi.org/10.19136/hitos.a29n83.5540

Keywords:

Stocks, Shortages, Discounts, Reorder point.

Abstract

OBJECTIVE: To apply five inventory models to obtain the order quantity and the reorder point for a product with discrete, random, independent and known demand and delivery time, considering discounts in the purchase price for acquiring larger volumes and the semi-variable order cost.

MATERIAL AND METHOD: The models used were the economic order quantity (EOQ) model, applied for random demand and delivery time, the target service level (TLS) model, the normal demand distribution (ND) model, the Eppen and Martin (EM) algorithm and the Lee and Rim (LR) model.

RESULTS: The differences in the results were in the reorder point value with the NS and LR models, which gave a higher value, leading to a higher inventory cost.

CONCLUSIONS: All models agree on the order quantity, which is due to the unit price discount achieved by placing a larger order; three of the five models agree on the reorder point and it appears to be the correct decision in this case study.

Downloads

Download data is not yet available.

Author Biographies

  • Juan Manuel Izar Landeta, Tecnológico Nacional de México, ITS Rioverde

    Doctor en Administración.

  • José Adrián Nájera Saldaña, Tecnológico Nacional de México, ITS Rioverde

    Doctor en Administración.

  • Lizbeth Angélica Zárate Camacho, Tecnológico Nacional de México, ITS Rioverde

    Maestra en Educación Basada en Competencias.

References

Akcan, S. & Kokangul, A. (2013). A new approximation for inventory control system with decision variable lead-time and stochastic demand, International Journal of Industrial Engineering, 20(3/4), 262-272.

Balakrishnan, A., Pangburn, M. S. & Stavrulaki, E. (2004). ‘Stack Them High, Let 'em Fly’: Lot-Sizing Policies When Inventories Stimulate Demand, Management Science, 50(5), 630-644. http://www.jstor.org/stable/30046103.

Banerjee, A. & Moore, J. (2022). The automotive semiconductor crisis and the way forward: COVID-19 shutdowns led to fluctuating demands, ´bullwhip´ effects. ISE: Industrial & Systems Engineering at Work, 54(7), 34-39.

Bhuiya, S. K. & Chakraborty, D. (2020). On the distribution-free continuous-review production-inventory model with service level constraint. Sādhanā, 45(1), 1-14. https://doi.org/10.1007/s12046-020-01383-5.

Caceres, H., Yu, D. & Nikolaev, A. (2018). Evaluating shortfall distributions in periodic inventory systems with stochastic endogenous demands and lead-times. Annals of Operations Research, 271(2), 405-427. https://doi.org/10.1007/s10479-018-2764-8.

Eppen, G. D. & Martin, R. K. (1988). Determining safety stock in the presence of stochastic lead time and demand, Management Science, 34(11), 1380-1390. https://doi.org/10.1287/mnsc.34.11.1380.

Escobar, J. W., Linfati, R. & Adarme Jaimes, W. (2017). Gestión de Inventarios para distribuidores de productos perecederos. Ingeniería y desarrollo, 35(1), 219-239. http://dx.doi.org/10.14482/inde.33.2.6368.

Gitae, K. (2017). Inventory model for distribution system with stochastic lead time and order crossover, Annual International Conference on Computational Mathematics, Computational Geometry & Statistics, 145-149. DOI: 10.5176/2251-1938_ORS17.8.

Kholidasari, I. (2014). On the effect of combination of statistical and judgmental stock control methods, Jurnal Teknik Industri, 16(2), 115-120. DOI: 10.9744/jti.16.2.115-120.

Kurdhi, N. A. & Doewes, R. I. (2019). Periodic review inventory policy with variable ordering cost, lead time and backorder rate, Songklanakarin Journal of Science & Technology, 41(1), 1-11.

Lee, C. J. & Rim, S. C. (2019). A mathematical safety stock model for DDMRP inventory replenishment. Mathematical Problems in Engineering, 2019, p. 10. https://doi.org/10.1155/2019/6496309.

Luo, X. R., Chu, C. H. & Chao, H. C. J. (2020). Novel solution method for inventory models with stochastic demand and defective units, Mathematical Problems in Engineering. 2020, p. 1-13. https://doi.org/10.1155/2020/3528706.

Mohammadmahdi A., Hamidreza, E. & Seyed M. S. (2017). A simulation model to analyze an inventory system for deteriorating items with service level constraints, International Journal of Industrial Engineering, 24(6), 587-603.

Moncayo, L., Ramírez, A. & Recio, G. (2016). Managing inventory levels and time to market in assembly supply chains by swarm intelligence algorithms, International Journal of Advanced Manufacturing Technology, 82(1-4), 419.433. https://doi.org/10.1007/s00170-015-7313-x.

Pulido, A., Andrea, A., Padilla, M., Sánchez, M. & De la-Rosa, L. (2020). An optimization approach for inventory costs in probabilistic inventory models: A case study, Ingeniare, 28(3), 383-395. http://dx.doi.org/10.4067/S0718-33052020000300383.

Silver, E. A., Pyke, D. F. & Peterson, R. (1998). Inventory management and production planning and scheduling, 3, p. 30. New York: Wiley.

Silver, E. A. (2008). Inventory management: An overview, Canadian publications, practical applications and suggestions for future research, Information Systems and Operations Research, 46(1), 15-28. https://doi.org/10.3138/infor.46.1.15.

Singh, A., Rasania, S. K. & Barua, K. (2022). Inventory control: Its principles and application, Indian Journal of Community Health. 34(1), 14-19. DOI: 10.47203/IJCH.2022.v34i01.004.

Tang, B., Ma, Z., Zhang, K., Cao, D. & Zhang, J. (2022). Substation Equipment Spare Parts’ Inventory Prediction Model Based on Remaining Useful Life. Mathematical Problems in Engineering, 2022, p. 11. https://doi.org/10.1155/2022/3396850.

Downloads

Published

2023-01-04

Issue

Section

Artículo Original

How to Cite

Izar Landeta, J. M., Nájera Saldaña, J. A., & Zárate Camacho, L. A. (2023). Estimation of Order Quantity and Reorder Point for an Item with RandomDemand and Delivery Time. HITOS DE CIENCIAS ECONÓMICO ADMINISTRATIVAS, 29(83), 1-21. https://doi.org/10.19136/hitos.a29n83.5540